Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Oct 3;272(40):24868-75.

Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of platelet/endothelial cell adhesion molecule-1 (PECAM-1) that are required for the cellular association and activation of the protein-tyrosine phosphatase, SHP-2.

Author information

  • 1Blood Research Institute, The Blood Center of Southeastern Wisconsin, Milwaukee, Wisconsin 53233, USA.


Recent studies have shown that the Src homology-2 (SH2) domain-containing protein-tyrosine phosphatase, SHP-2, associates with the cytoplasmic domain of PECAM-1 as it becomes tyrosine-phosphorylated during platelet aggregation: a process that can be mimicked in part by small synthetic phosphopeptides corresponding to the cytoplasmic domain of PECAM-1 encompassing tyrosine residues Tyr-663 or Tyr-686. To further examine the molecular requirements for PECAM-1/SHP-2 interactions, we generated human embryonic kidney (HEK)-293 cell lines that stably expressed mutant forms of PECAM-1 harboring tyrosine to phenylalanine (Tyr --> Phe) mutations in the cytoplasmic domain. Y663F and Y686F forms of PECAM-1 were tyrosine-phosphorylated to a somewhat lesser extent than wild-type PECAM-1, and a doubly substituted Y663,686F form of PECAM-1 failed to become tyrosine-phosphorylated, suggesting that the PECAM-1 cytoplasmic domain tyrosine residues 596, 636 and 701 do not serve as substrates for cellular kinases. Interestingly, SHP-2 binding was lost when either Tyr-663 or Tyr-686 were changed to phenylalanine, indicating that both residues are required for SHP-2/PECAM-1 association. Although PECAM-1 phosphopeptides NSDVQpY663TEVQV and DTETVpY686SEVRK stimulated the catalytic activity of the phosphatase to a similar extent, surface plasmon resonance studies revealed that the Tyr-663-containing peptide had approximately 10-fold higher affinity for SHP-2 than did the Tyr-686 peptide. Finally, peptido-precipitation analysis showed that the NH2-terminal SH2 domain of SHP-2 reacted preferentially with the Tyr-663 PECAM-1 phosphopeptide, while the Tyr-686 phosphopeptide associated only with the COOH-terminal SH2 domain of the phosphatase. Together, these data provide a molecular model for PECAM-1/SHP-2 interactions that may shed light on the downstream events that follow PECAM-1-mediated interactions of vascular cells.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk