Send to:

Choose Destination
See comment in PubMed Commons below
Development. 1997 Sep;124(17):3375-84.

Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2.

Author information

  • 1Department of Human Anatomy, Oxford, UK.


Mutations in the human fibroblast growth factor receptor type 2 (FGFR2) gene cause craniosynostosis, particularly affecting the coronal suture. We show here that, in the fetal mouse skull vault, Fgfr2 transcripts are most abundant at the periphery of the membrane bones; they are mutually exclusive with those of osteopontin (an early marker of osteogenic differentiation) but coincide with sites of rapid cell proliferation. Fibroblast growth factor type 2 (FGF2) protein, which has a high affinity for the FGFR2 splice variant associated with craniosynostosis, is locally abundant; immunohistochemical detection showed it to be present at low levels in Fgfr2 expression domains and at high levels in differentiated areas. Implantation of FGF2-soaked beads onto the fetal coronal suture by ex utero surgery resulted in ectopic osteopontin expression, encircled by Fgfr2 expression, after 48 hours. We suggest that increased FGF/FGFR signalling in the developing skull, whether due to FGFR2 mutation or to ectopic FGF2, shifts the cell proliferation/differentiation balance towards differentiation by enhancing the normal paracrine down-regulation of Fgfr2.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk