Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Biol. 1997 Sep;17(9):5193-200.

Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1.

Author information

  • 1Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697-3900, USA.


Cellular cholesterol and fatty acid levels are coordinately regulated by a family of transcriptional regulatory proteins designated sterol regulatory element binding proteins (SREBPs). SREBP-dependent transcriptional activation from all promoters examined thus far is dependent on the presence of an additional binding site for a ubiquitous coactivator. In the low-density lipoprotein (LDL) receptor, acetyl coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) promoters, which are all regulated by SREBP, the coactivator is the transcription factor Sp1. In this report, we demonstrate that Sp3, another member of the Sp1 family, is capable of substituting for Sp1 in coactivating transcription from all three of these promoters. Results of an earlier study showed that efficient activation of transcription from the LDL receptor promoter required domain C of Sp1; however, this domain is not crucial for activation of the simian virus 40 promoter, where synergistic activation occurs through multiple Sp1 binding sites and does not require SREBP. Also in the present report, we further localize the critical determinant of the C domain required for activation of the LDL receptor to a small region that is highly conserved between Sp1 and Sp3. This crucial domain encompasses the buttonhead box, which is a 10-amino-acid stretch that is present in several Sp1 family members, including the Drosophila buttonhead gene product. Interestingly, neither the buttonhead box nor the entire C domain is required for the activation of the FAS and ACC promoters even though both SREBP and Sp1 are critical players. ACC and FAS each contain two critical SREBP sites, whereas there is only one in the LDL receptor promoter. This finding suggested that buttonhead-dependent activation by SREBP and Sp1 may be limited to promoters that naturally contain a single SREBP recognition site. Consistent with this model, a synthetic construct containing three tandem copies of the native LDL receptor SREBP site linked to a single Sp1 site was also significantly activated in a buttonhead-independent fashion. Taken together, these studies indicate that transcriptional activation through the concerted action of SREBP and Sp1 can occur by at least two different mechanisms, and promoters that are activated by each one can potentially be identified by the number of critical SREBP binding sites that they contain.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk