Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Optom Vis Sci. 1997 Jun;74(6):367-75.

Power vectors: an application of Fourier analysis to the description and statistical analysis of refractive error.

Author information

  • 1School of Optometry, Indiana University, Bloomington, USA. thibos@indiana.edu

Abstract

The description of sphero-cylinder lenses is approached from the viewpoint of Fourier analysis of the power profile. It is shown that the familiar sine-squared law leads naturally to a Fourier series representation with exactly three Fourier coefficients, representing the natural parameters of a thin lens. The constant term corresponds to the mean spherical equivalent (MSE) power, whereas the amplitude and phase of the harmonic correspond to the power and axis of a Jackson cross-cylinder (JCC) lens, respectively. Expressing the Fourier series in rectangular form leads to the representation of an arbitrary sphero-cylinder lens as the sum of a spherical lens and two cross-cylinders, one at axis 0 degree and the other at axis 45 degrees. The power of these three component lenses may be interpreted as (x,y,z) coordinates of a vector representation of the power profile. Advantages of this power vector representation of a sphero-cylinder lens for numerical and graphical analysis of optometric data are described for problems involving lens combinations, comparison of different lenses, and the statistical distribution of refractive errors.

Comment in

PMID:
9255814
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk