Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Neurosci. 1997;9(3):159-69.

Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death.

Author information

  • 1Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

Cultured mouse cortical neurons undergo apoptosis when exposed to staurosporine. The cell-permeable caspase inhibitor Z-Val-Ala-Asp fluoromethylketone (Z-VAD.FMK) attenuated this death, without altering overall protein synthesis. Z-VAD.FMK also attenuated cortical neuronal apoptosis induced by removal of serum. However, Z-VAD.FMK did not attenuate the excitotoxic necrosis induced by 5-min exposure to 100 microM NMDA, 24-h exposure to 100 microM kainate, or 90-min exposure to oxygen-glucose deprivation. We have previously shown that blockade of the excitotoxic component of oxygen-glucose deprivation-induced neuronal death with glutamate antagonists unmasks an apoptotic death. Treatment with Z-VAD.FMK, but not the cathepsin-B protease inhibitor Z-Phe-Ala fluoromethylketone (Z-FA.FMK), also attenuated this oxygen-glucose deprivation-induced neuronal apoptosis. These data support the idea that brain caspases mediate the apoptotic component of oxygen-glucose deprivation-induced neuronal death and raise the possibility that combining caspase inhibitors with glutamate antagonists might attenuate brain damage induced by hypoxic-ischemic insults in vivo.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk