Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Aug 1;272(31):19575-81.

Transcriptional regulation of N-acetylglucosaminyltransferase V by the src oncogene.

Author information

  • 1Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, 30602, USA.

Abstract

Transformation of baby hamster kidney fibroblasts by the Rous sarcoma virus causes a significant increase in the GlcNAcbeta(1, 6)Man-branched oligosaccharides by elevating the activity and mRNA transcript levels encoding N-acetylglucosaminyltransferase V (GlcNAc-T V). Elevated activity and mRNA levels could be inhibited by blocking cell proliferation with herbimycin A, demonstrating that Src kinase activity can regulate GlcNAc-T V expression. 5' RACE analysis was used to identify a 3-kilobase 5'-untranslated region from GlcNAc-T V mRNA and locate a transcriptional start site in a 25-kilobase pair GlcNAc-T V human genomic clone. A 6-kilobase pair fragment of the 5' region of the gene contained AP-1 and PEA3/Ets binding elements and, when co-transfected with a src expression plasmid into HepG2 cells, conferred src-stimulated transcriptional enhancement upon a luciferase reporter gene. This stimulation by src could be antagonized by co-transfection with a dominant-negative mutant of the Raf kinase, suggesting the involvement of Ets transcription factors in the regulation of GlcNAc-T V gene expression. The src-responsive element was localized by 5' deletion analysis to a 250-base pair region containing two overlapping Ets sites. src stimulation of transcription from this region was inhibited by co-transfection with a dominant-negative mutant of Ets-2, demonstrating that the effects of the src kinase on GlcNAc-T V expression are dependent on Ets.

PMID:
9235963
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk