Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 Aug 1;272(31):19220-8.

Structure and organization of the human ankyrin-1 gene. Basis for complexity of pre-mRNA processing.

Author information

  • 1Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510, USA. Patrick_Gallagher@QM.Yale.edu

Abstract

Ankyrin-1 (ANK-1) is an erythrocyte membrane protein that is defective in many patients with hereditary spherocytosis, a common hemolytic anemia. In the red cell, ankyrin-1 provides the primary linkage between the membrane skeleton and the plasma membrane. To gain additional insight into the structure and function of this protein and to provide the necessary tools for further genetic studies of hereditary spherocytosis patients, we cloned the human ANK-1 chromosomal gene. Characterization of the ANK-1 gene genomic structure revealed that the erythroid transcript is composed of 42 exons distributed over approximately 160 kilobase pairs of DNA. Comparison of the genomic structure with the protein domains reveals a near-absolute correlation between the tandem repeats encoding the membrane-binding domain of ankyrin with the location of the intron/exon boundaries in the corresponding part of the gene. Erythroid stage-specific, complex patterns of alternative splicing were identified in the region encoding the regulatory domain of ankyrin-1. Novel brain-specific transcripts were also identified in this region, as well as in the "hinge" region between the membrane-binding and spectrin-binding domains. Utilization of alternative polyadenylation signals was found to be the basis for the previously described, stage-specific 9.0- and 7.2-kilobase pair transcripts of the ANK-1 gene.

PMID:
9235914
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk