Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochem Mol Med. 1997 Jun;61(1):114-20.

Active form of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase.

Author information

  • 1Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-1153, USA. rogers@purdue.edu

Abstract

Based on multiple gel permeation chromatographic experiments, we report a Stokes radius of 59.7 A for Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase; EC 1.1.1.88) and its His381Asn, His381Gln, and His381Lys mutant enzymes. Comparison of this Stokes radius with the radius calculated from the crystal structure indicated that the active form of P. mevalonii HMG-CoA reductase was a hexamer and not a dimer as previously thought. The Stokes radius, an S26,w of 11.0, and an estimated V of 0.723 were used in the Svedberg equation to calculate an anhydrous molecular mass of 270,084 Da for P. mevalonii HMG-CoA reductase (monomer mass 45,538 Da), consistent with the enzyme being a hexamer in solution. The Stokes radii of all standard proteins examined correlated with the inverse error function complement of their partition coefficient, Kd. Kd did not correlate with logarithm of the standard protein's molecular weight. Eight nonstandard proteins had Stokes radii that matched their crystallographic radii of longest axis. This indicated that the frozen conformation of a protein in its crystal form can dictate restraints on its shape in solution.

PMID:
9232206
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk