Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 1997 Jul;83(1):153-9.

Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects.

Author information

  • 1Exercise Physiology Laboratory, Department of Health, Kinesiology, and Leisure Studies, Purdue University, West Lafayette, Indiana 47907, USA.

Abstract

The purpose of this study was to determine whether aerobic fitness level would influence measurements of excess postexercise oxygen consumption (EPOC) and initial rate of recovery. Twelve trained [Tr; peak oxygen consumption (VO2 peak) = 53.3 +/- 6.4 ml . kg-1 . min-1] and ten untrained (UT; VO2 peak = 37.4 +/- 3.2 ml . kg-1 . min-1) subjects completed two 30-min cycle ergometer tests on separate days in the morning, after a 12-h fast and an abstinence from vigorous activity of 24 h. Baseline metabolic rate was established during the last 10 min of a 30-min seated preexercise rest period. Exercise workloads were manipulated so that they elicited the same relative, 70% VO2 peak (W70%), or the same absolute, 1.5 l/min oxygen uptake (VO2) (W1.5), intensity for all subjects, respectively. Recovery VO2, heart rate (HR), and respiratory exchange ratio (RER) were monitored in a seated position until baseline VO2 was reestablished. Under both exercise conditions, Tr had shorter EPOC duration (W70% = 40 +/- 15 min, W1.5 = 21 +/- 9 min) than UT (W70% = 50 +/- 14 min; W1.5 = 39 +/- 14 min), but EPOC magnitude (Tr: W70% = 3.2 +/- 1.0 liters O2, W1.5 = 1.5 +/- 0.6 liters O2; UT: W70% = 3.5 +/- 0.9 liters O2, W1.5 = 2.4 +/- 0.6 liters O2) was not different between groups. The similarity of Tr and UT EPOC accumulation in the W70% trial is attributed to the parallel decline in absolute VO2 during most of the initial recovery period. Tr subjects had faster relative decline during the fast-recovery phase, however, when a correction for their higher exercise VO2 was taken. Postexercise VO2 was lower for Tr group for nearly all of the W1.5 trial and particularly during the fast phase. Recovery HR kinetics were remarkably similar for both groups in W70%, but recovery was faster for Tr during W1.5. RER values were at or below baseline throughout much of the recovery period in both groups, with UT experiencing larger changes than Tr in both trials. These findings indicate that Tr individuals have faster regulation of postexercise metabolism when exercising at either the same relative or same absolute work rate.

PMID:
9216958
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk