Send to

Choose Destination
See comment in PubMed Commons below
FASEB J. 1997 Jun;11(7):517-25.

Sulfation and sulfotransferases 6: Biochemistry and molecular biology of plant sulfotransferases.

Author information

  • 1Department of Biology, Concordia University, Montreal, Quebec, Canada.


It is now well established that, in mammals, sulfate conjugation constitutes an important reaction in the transformation of xenobiotics and in the modulation of the biological activity of steroid hormones and neurotransmitter. The presence of a sulfate group on some molecules can also be a prerequisite for their biological function. For example, it is well known that the sulfate groups are directly involved in the molecular interaction between heparin and antithrombin III. In plants, sulfation also seems to play an important role in the intermolecular recognition and signaling processes, as indicated by the requirement of a sulfate moiety for the biological activity of gallic acid glucoside sulfate in the seismonastic and gravitropic movements of plants, and of Nod RM1 in the cortical cell division during early nodule initiation in Rhizobium meliloti-alfalfa interaction. In addition, recent studies indicate that flavonoid conjugates, including the sulfate esters, may play a role in the regulation of plant growth by strongly binding the naphthylphthalamic acid receptor, thus blocking the quercetin-stimulated accumulation of the auxin phytohormone. Although several sulfated metabolites are known to accumulate in a variety of plant species, the study of enzymes that catalyze the sulfation reaction in plants lagged considerably compared to those conducted with their mammalian homologs. This apparent lack of interest may have been because the function of plant-sulfated metabolites is difficult to predict, since their accumulation is often restricted to a limited number of species. Despite this limitation, several plant sulfotransferases (STs) have been characterized at the biochemical level, and the cDNA clones encoding six plant STs have been isolated. Based on sequence homology, the plant ST coding sequences are grouped under the SULT3 family, also known as the flavonol ST family. This review summarizes our current knowledge of the plant STs and focuses on the functional significance of the sulfate conjugation in plant growth, development, and adaptation to stress.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk