Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Plant Microbe Interact. 1997 Jul;10(5):605-16.

Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39.

Author information

  • 1Okologie des Bodens, Botanisches Institut, RWTH Aachen, Germany.

Abstract

DNA corresponding to two copies of the Rhizobium leguminosarum bv. viciae strain VF39 fixNOQP operon coding for a putative symbiotic terminal oxidase of the heme-copper oxidase superfamily was cloned, sequenced, and genetically analyzed. The first copy is located upstream of the fixK-fixL region on plasmid pRleVF39c, whereas the second copy resides on the nodulation plasmid pRleVF39d. Insertional mutagenesis with antibiotic resistance cassettes confirmed that both copies were functional, and that the presence of at least one functional copy was required for nitrogen fixation. The deduced amino acid sequences of both fixN genes are highly similar (95% identity) and contain 15 putative transmembrane helices, suggesting that the fixN gene products are integral membrane proteins. Furthermore, six histidine residues predicted to be the ligands for a heme-copper binuclear center and a low-spin heme b are conserved in both R. leguminosarum fixN proteins. The deduced fixO and fixP gene products show characteristics of membrane-bound monoheme and diheme cytochrome c, respectively. Upstream of both fixN copies putative Fnr-consensus binding sites (anaeroboxes) were found that differ in certain base pairs. As R. leguminosarum VF39 possesses two members of the Fnr/FixK regulator family, FnrN and FixK, the possible differential regulation of both fixN copies was analyzed with fixN-gusA reporter gene fusions. Both fixN fusions were induced under free-living microaerobic conditions and in the symbiotic zone of the root nodule. Induction of the expression of fixNc and fixNd was highly reduced in a fnrN mutant background and in a fixL mutant background, whereas fixK was only marginally involved in fixN regulation. Residual expression of fixN was observed in an fnrN/fixK double mutant.

PMID:
9204566
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk