Send to:

Choose Destination
See comment in PubMed Commons below
Life Sci. 1997;60(26):2399-406.

Affinities of dopamine analogs for monoamine granular and plasma membrane transporters: implications for PET dopamine studies.

Author information

  • 1Department of Medical Physics, University of Wisconsin Medical School, Madison 53706, USA.


Affinities of dopamine (DA) analogs to both granular and plasma membrane uptake transporters were measured in vitro by inhibition of [3H]DA uptake in bovine chromaffin granule ghosts and C6 glial cells transfected with cDNA for the rat presynaptic dopamine transporter, respectively. Five amines were studied: DA, 6-fluorodopamine (6FDA), m-tyramine (MTA), 6-fluoro-m-tyramine (6FMTA), and beta-fluoromethylene-m-tyramine (FMMTA). Direct uptake of 18F labeled 6FDA and 6FMTA was also measured in the chromaffin granule system and compared with [3H]DA uptake. Results show that the transporter affinities of 6FDA and MTA were similar to that of DA in both transport systems while affinities of 6FMTA and FMMTA were lower. Furthermore while the direct uptake of DA and FDA in chromaffin granules were essentially identical and significantly reserpine-inhibitable, the direct uptake of 6FMTA was about 15-fold less and only minimally sensitive to reserpine pretreatment. Thus, although vesicular protection and reuptake may influence the turnover of FDA in 6-fluoroDOPA studies, they are unlikely to be important determinants of the kinetics of the slowly clearing components in studies with either 6-fluoro-m-tyrosine (6FMT) or 6-fluoro-beta-fluoro-methylene-m-tyrosine (6FFMMT), the bioprecursors of 6FMTA and 6-fluoro-FMMTA, respectively. These results are consistent with the finding that the longterm component in 6FMT PET studies is 6-fluoro-hydroxyphenylacetic acid (6FHPAC), which can be explained by the lack of vesicular protection of 6FMTA from MAO oxidation.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk