Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1997 Jun 13;269(3):301-12.

Structural relationships in the OmpR family of winged-helix transcription factors.

Author information

  • 1Center for Advanced Biotechnology and Medicine and Dept. of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA.

Abstract

OmpR, a protein that regulates expression of outer membrane porin proteins in enteric bacteria, belongs to a large family of transcription factors. These transcription factors bind DNA and interact productively with RNA polymerase to activate transcription. The two functions, DNA-binding and transcriptional activation, have been localized within the 100 amino acid DNA-binding domain that characterizes members of the OmpR family. Both DNA binding and transcriptional activation by OmpR related proteins have remained poorly understood for lack of structural information or lack of sequence homology with transcription factors of known three-dimensional structure. The recently determined crystal structures of the Escherichia coli OmpR DNA-binding domain (OmpRc) have defined a new subfamily of "winged-helix-turn-helix" DNA-binding proteins. Structural elements of OmpRc can be assigned functional roles by analogy to other winged-helix DNA-binding proteins. A structure based sequence analysis of the OmpR family of transcription factors indicates specific roles for all conserved amino acid residues. Mutagenesis studies performed on several members of this family, OmpR, PhoB, ToxR and VirG, can now be interpreted with respect to the structure.

PMID:
9199401
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk