Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Pharmacol. 1997 Jun;51(6):1042-52.

Purification of a new dimeric protein from Cliona vastifica sponge, which specifically blocks a non-L-type calcium channel in mouse duodenal myocytes.

Author information

  • 1Centre National de la Recherche Scientifique Enseignement Supérieur Associé 5017, Physiopathologie et Pharmacologie Vasculaire, Faculté de Pharmacie, Université de Bordeaux II, France.

Abstract

Marine sponges are synthesizing a wide variety of peptidic and organic molecules with biological activities. Multiple-step purification of Cliona vastifica extract led to a new dimeric peptide (mapacalcine; M(r) = 19,064) that is composed of two homologous chains, each containing nine cysteins. This protein has been found to selectively block a new calcium conductance characterized in mouse duodenal myocytes with an IC50 value of approximately 0.2 microM. The mapacalcine-sensitive current was a non-L-type calcium current activated from a holding potential of -80 mV that persisted during stimulation of the cell at high frequencies (0.1-0.2 Hz) within 5-10 min. Time constants of inactivation were similar for both L-type and non-L-type calcium currents. The non-L-type calcium current of duodenal myocytes was not blocked by the pharmacological agents specific for N-, L-, P-, or Q-type calcium channels. Mapacalcine was unable to block T-type calcium current in portal vein myocytes as well as voltage-dependent potassium currents and calcium-activated chloride currents in duodenal and portal vein cells. Mapacalcine did not affect caffeine-induced calcium responses, indicating that it did not interfere with intracellular calcium stores. Competition experiments on mouse intestinal membranes showed that mapacalcine did not interact with dihydropyridines receptors. These data suggest that mapacalcine may be a specific inhibitor of a new type of calcium current, first identified in duodenal myocytes.

PMID:
9187271
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk