Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell Motil Cytoskeleton. 1997;37(2):127-38.

Effects of shaker-1 mutations on myosin-VIIa protein and mRNA expression.

Author information

  • 1Department of Biology, Yale University, New Haven, Connecticut 06520, USA. tama.hasson@yale.edu

Abstract

Numerous mammalian diseases have been found to be due to mutations in components of the actin cytoskeleton. Recently, mutations in the gene for an unconventional myosin, myosin-VIIa, were found to be the basis for the deafness and vestibular dysfunction observed in shaker-1 (sh1) mice and for a human deafness-blindness syndrome, Usher syndrome type 1B. Seven alleles of sh1 mice were analyzed to assess the affects of different myosin-VIIa mutations on both gene expression and tissue function. Myosin-VIIa is expressed in the inner ear and the retina, as well as the kidney, lung, and testis. Northern blot analysis indicated that myosin-VIIa mRNA expression, size, and stability were unaffected in the seven sh1 alleles. Immunoblot analysis showed that all seven alleles expressed some full-length myosin-VIIa protein. The range of expression, however, ran from sh1 [original], which expressed wild-type levels of protein, to two strains, sh1(4494SB) and sh1(4626SB), which expressed less than 1% of the normal level of myosin-VIIa protein. For the three alleles of sh1 that have been characterized and that have mutations in the motor domain, sh1 [original], sh1(816SB) and sh1(6J), the level of protein expression observed in these sh1 alleles correlated well with the predicted effects of the mutations on motor function. No change in retinal or testicular structure was observed at the light microscopic level during the life span of the seven sh1 alleles. Myosin-VIIa protein, when detectable, was observed to locate properly in the sh1 mice. On the basis of these results, we propose that the mutations in myosin-VIIa in the sh1 alleles leads to both motor dysfunction and to a protein destabilization phenotype.

PMID:
9186010
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk