Display Settings:

Format

Send to:

Choose Destination
Neuron. 1997 May;18(5):793-802.

TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret.

Author information

  • 1Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) comprise a family of TGF-beta-related neurotrophic factors (TRNs), which have trophic influences on a variety of neuronal populations. A receptor complex comprised of TrnR1 (GDNFR alpha) and Ret was recently identified and found to be capable of mediating both GDNF and NTN signaling. We have identified a novel receptor based on homology to TrnR1, called TrnR2, that is 48% identical to TrnR1, and is located on the short arm of chromosome 8. TrnR2 is attached to the cell surface via a GPI-linkage, and can mediate both NTN and GDNF signaling through Ret in vitro. Fibroblasts expressing TrnR2 and Ret are approximately 30-fold more sensitive to NTN than to GDNF treatment, whereas those expressing TrnR1 and Ret respond equivalently to both factors, suggesting the TrnR2-Ret complex acts preferentially as a receptor for NTN. TrnR2 and Ret are expressed in neurons of the superior cervical and dorsal root ganglia, and in the adult brain. Comparative analysis of TrnR1, TrnR2, and Ret expression indicates that multiple receptor complexes, capable of mediating GDNF and NTN signaling, exist in vivo.

PMID:
9182803
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Secondary Source ID, Grant Support

Publication Types

MeSH Terms

Substances

Secondary Source ID

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk