Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem J. 1997 Apr 1;323 ( Pt 1):167-71.

Design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites.

Author information

  • 1Department of Biophysics, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo 04044-020, Brazil.

Abstract

The tissue kallikrein inhibitors reported in the present work were derived by selectively replacing residues in Nalpha-substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was found to be an efficient inhibitor of human tissue kallikrein (Ki 0.4 microM) and was neither a substrate nor an inhibitor of plasma kallikrein. The peptide inhibitors having phenylalanine as the P1 residue behaved as specific inhibitors for kallidin-releasing tissue kallikreins, while plasma kallikrein showed high affinity for inhibitors containing (p-nitro)phenylalanine at the same position. The Ki value of the most potent inhibitor developed, Abz-Phe-Arg-Arg-Pro-Arg-EDDnp [where Abz is o-aminobenzoyl and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine], was 0.08 microM for human tissue kallikrein. Progress curve analyses of the inhibition of human tissue kallikrein by benzoyl-Arg-pNA and phenylacetyl-Phe-Ser-Arg-EDDnp indicated a single-step mechanism for reversible formation of the enzyme-inhibitor complex.

PMID:
9173877
PMCID:
PMC1218290
[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk