Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Cancer. 1997 Apr 10;71(2):183-91.

MLN64 exhibits homology with the steroidogenic acute regulatory protein (STAR) and is over-expressed in human breast carcinomas.

Author information

  • 1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale U184/Université Louis Pasteur, Illkirch, France.

Abstract

The MLN64 gene, which is localized in q12-q21 of the human chromosome 17, encodes a novel protein containing 2 distinct domains. At the N-terminal, MLN64 exhibits a potential trans-membrane region, while at the C-terminal, it shares homology with the F26F4.4 protein of Coenorhabditis elegans and the steroidogenic acute regulatory (StAR) protein, a mitochondrial protein which is involved in steroid-hormone synthesis. By comparing the C-terminal part of these proteins, we defined a novel protein domain, which we termed SHD for "StAR Homology Domain". Of the 93 primary invasive breast carcinomas that were examined, 14 were found to over-express MLN64. These 14 tumors also expressed high c-erbB-2 transcript levels, which were not detected in the MLN64-negative tumors. MLN64 mRNA and protein were specifically detected in malignant cells of breast carcinomas. MLN64 protein was localized within bundle-like structures distributed throughout the cell cytoplasm and condensed in a perinuclear patch, suggesting an association with a specific cell compartment. When the N-terminal part of MLN64 was deleted, MLN64 was uniformly distributed in the cell cytoplasm, indicating that N-terminal part is involved in the specific cytoplasmic localization of MLN64. The homology between the C-terminal part of MLN64 and the functional StAR domain (SHD) suggests that MLN64 and StAR, although distributed in different cellular compartments, may both play a role in steroidogenesis. In this case, the high levels of MLN64 observed in some breast carcinomas could contribute to the progression of these tumors through increased intratumoral steroidogenesis.

PMID:
9139840
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk