Send to:

Choose Destination
See comment in PubMed Commons below
J Physiol. 1997 Mar 15;499 ( Pt 3):715-20.

Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel.

Author information

  • 1Department of Pharmacology II, Faculty of Medicine, Osaka University, Japan.


1. We analysed the K+ channel composed of the sulphonylurea receptor 2B (SUR2B) and an inwardly rectifying K+ channel subunit Kir6.1 coexpressed in a mammalian cell line, HEK293T, with the patch clamp technique. 2. In the cell-attached configuration, K+ channel openers (pinacidil and nicorandil) activated approximately 33 pS K+ channels (approximately 145 mM external K+), which were inhibited by the sulphonylurea glibenclamide. 3. Although SUR2B forms an ATP-sensitive K+ channel with Kir6.2, whose amino acid sequence is approximately 70% homologous with that of Kir6.1, the K+ channel composed of SUR2B and Kir6.1 surprisingly did not spontaneously open on patch excision in the absence of intracellular ATP. 4. In inside-out patches, uridine diphosphate and guanosine diphosphate induced channel activity, which was inhibited by glibenclamide but not ATP. Intracellular ATP on its own activated the channels. K+ channel openers and intracellular nucleotides synergistically activated the channel. 5. Therefore, the K+ channel composed of SUR2B and Kir6.1 is not a classical ATP-sensitive K+ channel but closely resembles the nucleotide diphosphate-dependent K+ channel in vascular smooth muscle cells.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley Icon for PubMed Central
    Loading ...
    Write to the Help Desk