Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1997 May 2;272(18):11770-7.

Characterization of the FET4 protein of yeast. Evidence for a direct role in the transport of iron.

Author information

  • 1Department of Biochemistry and Molecular Biology, University of Minnesota, Duluth, Minnesota 55812, USA.

Abstract

The low affinity Fe2+ uptake system of Saccharomyces cerevisiae requires the FET4 gene. In this report, we present evidence that FET4 encodes the Fe2+ transporter protein of this system. Antibodies prepared against FET4 detected two distinct proteins with molecular masses of 63 and 68 kDa. In vitro synthesis of FET4 suggested that the 68-kDa form is the primary translation product, and the 63-kDa form may be generated by proteolytic cleavage of the full-length protein. Consistent with its role as an Fe2+ transporter, FET4 is an integral membrane protein present in the plasma membrane. The level of FET4 closely correlated with uptake activity over a broad range of expression levels and is itself regulated by iron. Furthermore, mutations in FET4 can alter the kinetic properties of the low affinity uptake system, suggesting a direct interaction between FET4 and its Fe2+ substrate. Mutations affecting potential Fe2+ ligands located in the predicted transmembrane domains of FET4 significantly altered the apparent Km and/or Vmax of the low affinity system. These mutations may identify residues involved in Fe2+ binding during transport.

PMID:
9115232
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk