Send to:

Choose Destination
See comment in PubMed Commons below
Physiol Rev. 1997 Apr;77(2):321-58.

Lactate-proton cotransport in skeletal muscle.

Author information

  • 1Copenhagen Muscle Research Centre, August Krogh Institute, University of Copenhagen, Denmark.


Skeletal muscle and most other tissues possess a membrane transport system mediating a coupled lactate and H+ translocation. Muscle possesses several lactate-proton transporter isoforms of which two have been cloned; however, the main isoform remains to be identified. The isoforms may have different properties and functional roles, but these have not been specifically characterized. The distribution of lactate-proton transport capacity in skeletal muscle is fiber type dependent, with a higher capacity in slow-twitch fibers compared with fast-twitch fibers. During intense muscle activity and in the recovery period, the lactate and H+ effluxes are mainly mediated by the lactate-proton transporter, which reduces the accumulation of lactate in muscle as well as the drop in internal pH suggested to be involved in muscle fatigue. Thus the lactate-proton transporter is of functional importance for pH regulation in association with muscle activity. This carrier is also important for lactate uptake into resting muscle and other tissues; therefore, the carrier distribution is important for the fate of lactate in the body. In addition, the capacity of the lactate-proton transporter can be increased by intense training and is reduced by inactivity; thus the lactate-proton transporter can undergo adaptive changes.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk