Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Pediatr Res. 1997 Apr;41(4 Pt 1):464-72.

Changes in decorin expression with hyperoxic injury to developing rat lung.

Author information

  • 1Department of Pediatrics, University of North Carolina at Chapel Hill 27599-7596, USA.

Abstract

Proteoglycans are extracellular matrix components that appear to play important roles in lung development and in the response to injury. Decorin, a small extracellular matrix-associated proteoglycan, is known to be involved in collagen fibrillogenesis and is a likely participant in the pathogenesis of lung injury. We hypothesized that chronic exposure of the developing lung to hyperoxia would result in temporal and spatial changes in decorin expression. To determine the expression of decorin in normal and oxygen-injured lung, newborn rats were exposed to hyperoxia for 6 wk. Decorin mRNA abundance was determined using Northern hybridization analyses, and decorin expression was localized by in situ hybridization and immunohistochemistry. Decorin mRNA expression in type II pneumocytes was studied using reverse transcription-polymerase chain reaction. Oxygen exposure is associated with a 77% reduction in decorin mRNA in whole lung and a decrease in decorin immunoreactivity in connective tissues surrounding large airways and blood vessels, but an increase in decorin mRNA and protein expression at the tips of alveolar septa. Studies using isolated cells indicate that macrophages and polymorphonuclear neutrophils contain decorin core protein but not decorin mRNA. Type II pneumocytes do not contain either decorin mRNA or core protein. These findings demonstrate that hyperoxic lung injury is associated with localized changes in decorin expression, changes that are not reflected in whole lung RNA studies. It is likely that regional changes in lung decorin expression are influenced by factors produced and acting locally, and that such changes may contribute to the morphologic alterations characteristic of oxygen-induced lung injury.

PMID:
9098846
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk