Display Settings:


Send to:

Choose Destination
J Neurophysiol. 1997 Mar;77(3):1338-48.

Dynorphin A-mediated reduction in multiple calcium currents involves a G(o) alpha-subtype G protein in rat primary afferent neurons.

Author information

  • 1Department of Internal Medicine, University of Michigan, Ann Arbor, USA.


We examined the effect of antisera directed at specific G-protein subtype(s) on dynorphin A (Dyn A)-mediated reduction of calcium currents in rat dorsal root ganglia (DRG) neurons. Whole cell patch-clamp recordings were performed on acutely dissociated neurons. Dyn A (1 microM)-mediated decrease in calcium currents was inhibited > 90% by the preferential kappa-receptor antagonist norbinaltorphimine. Dyn A (300-1,000 nM)-mediated reduction in calcium currents was examined during intracellular administration of antisera directed against specific regions of G(o) alpha, G(i) 1 alpha/G(1) 2 alpha, and G(i) 3 alpha subunits. Intracellular dialysis with an antiserum specific for G(o) alpha for 20 min decreased calcium current inhibition by Dyn A (1 microM) in 13 of 15 neurons by an average of 75%. Dialysis with nonimmune serum did not affect Dyn A's action to reduce calcium currents. Intracellular dialysis with either anti-G(i) 1 alpha/G(i) 2 alpha or anti-G(i) 3 alpha antisera did not affect Dyn A-induced changes in calcium currents. In the presence of the N-type calcium channel antagonist omega-conotoxin GVIA, the P-type calcium channel antagonist omega-Aga IVA, and omega-Aga MVIIC applied subsequent to the other toxins, the effect of Dyn A to reduce calcium currents was inhibited by 52, 28, and 16%, respectively. The L channel antagonist nifedipine did not affect the ability to Dyn A to inhibit calcium currents. These results suggest that in rat DRG neurons coupling of kappa-opioid receptors to multiple transient, high-threshold calcium currents involves the G(o) alpha subclass of G proteins.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk