Format

Send to

Choose Destination
See comment in PubMed Commons below
J Hepatol. 1997 Mar;26(3):669-77.

Effects of vitamins E, C and catalase on bromobenzene- and hydrogen peroxide-induced intracellular oxidation and DNA single-strand breakage in Hep G2 cells.

Author information

  • 1Department of Histology and Cell Biology, Umea University, Sweden.

Abstract

BACKGROUND/AIMS:

Water-soluble vitamin E (Trolox C), ascorbic acid and catalase were shown in our previous study to protect isolated rat hepatocytes against bromobenzene-induced toxicity.

METHODS:

In order to study the mechanisms of this protection and the pathogenesis of bromobenzene-induced hepatocellular injury, a fluorometric assay for the investigation of intracellular oxidation, indicated by conversion of dichlorofluorescein diacetate to dichlorofluorescein, was used. Single-strand DNA breakage was also evaluated in Hep G2 cells by a radio-labelling method.

RESULTS:

Bromobenzene (2.4 and 4.8 mM) induced a significant increase in dichlorofluorescein fluorescence intensity compared to the controls. Trolox C, ascorbic acid or catalase significantly inhibited bromobenzene-induced enhancement of fluorescence intensity (p<0.05-0.001), as well as reduced auto-intracellular oxidation in untreated Hep G2 cells. Hydrogen peroxide (H2O2) evoked a dose-dependent increase in dichlorofluorescein fluorescence intensity in Hep G2 cells, and the effect was completely blocked by Trolox C (2.0 mM) and catalase (4800 unit/ml). Bromobenzene caused significant single-strand DNA breakage in Hep G2 cells during 2 h suspension incubation and 24 h primary incubation. H2O2 (400 microM) led to marked single-strand DNA breakage in 20 min, and the effect was attenuated by Trolox C.

CONCLUSIONS:

Metabolism of bromobenzene in Hep G2 cells induces production of H2O2, indicated by enhancement of dichlorofluorescein fluorescence intensity, or other free radicals, which leads to single-strand DNA breakage in the cells. Vitamins E and C and catalase display strong intracellular antioxidative effects. Vitamin E could partially inhibit H2O2-induced single-strand DNA breakage in the cells.

PMID:
9075676
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk