Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Biol Chem. 1997 Mar 7;272(10):6097-100.

The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis.

Author information

  • 1Divisions of Medical, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.

Abstract

The tuberous sclerosis complex 2 (TSC2) is a tumor suppressor gene that plays a causative role in the autosomal dominant syndrome of tuberous sclerosis. The latter is characterized by the development of hamartomas and occasional malignancies. Expression of the wild-type gene in TSC2 mutant tumor cells inhibits proliferation and tumorigenicity. This "suppressor" activity is encoded by functional domain(s) in the C terminus that contains homology to Rap1GAP. Using a yeast two-hybrid assay to identify proteins that interact with the C-terminal domain of tuberin, the product of TSC2, a cytosolic factor, rabaptin-5, was found to associate with a distinct domain lying adjacent to the TSC2 GAP homology region. Rabaptin-5 also binds the active form of GTPase Rab5. Immune complexes of native tuberin, as well as recombinant protein, possessed activity to stimulate GTP hydrolysis of Rab5. Tuberin GAP activity was specific for Rab5 and showed no cross-reactivity with Rab3a or Rab6. Cells lacking tuberin possessed minimal Rab5GAP activity and were associated with an increased uptake of horseradish peroxidase. Re-expression of tuberin in TSC2 mutant cells reduced the rate of fluid-phase endocytosis. These findings suggest that tuberin functions as a Rab5GAP in vivo to negatively regulate Rab5-GTP activity in endocytosis.

PMID:
9045618
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk