Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Nature. 1997 Feb 27;385(6619):833-8.

Crystal structure of the anthrax toxin protective antigen.

Author information

  • 1Biochemistry Department, University of Leicester, UK.

Abstract

Protective antigen (PA) is the central component of the three-part protein toxin secreted by Bacillus anthracis, the organism responsible for anthrax. After proteolytic activation on the host cell surface, PA forms a membrane-inserting heptamer that translocates the toxic enzymes, oedema factor and lethal factor, into the cytosol. PA, which has a relative molecular mass of 83,000 (M(r) 83K), can also translocate heterologous proteins, and is being evaluated for use as a general protein delivery system. Here we report the crystal structure of monomeric PA at 2.1 A resolution and the water-soluble heptamer at 4.5 A resolution. The monomer is organized mainly into antiparallel beta-sheets and has four domains: an amino-terminal domain (domain 1) containing two calcium ions and the cleavage site for activating proteases; a heptamerization domain (domain 2) containing a large flexible loop implicated in membrane insertion; a small domain of unknown function (domain 3); and a carboxy-terminal receptor-binding domain (domain 4). Removal of a 20K amino-terminal fragment from domain 1 allows the assembly of the heptamer, a ring-shaped structure with a negatively charged lumen, and exposes a large hydrophobic surface for binding the toxic enzymes. We propose a model of pH-dependent membrane insertion involving the formation of a porin-like, membrane-spanning beta-barrel.

PMID:
9039918
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk