Display Settings:

Format

Send to:

Choose Destination
J Immunol. 1997 Jan 1;158(1):226-34.

Evidence for altered regulation of I kappa B alpha degradation in human colonic epithelial cells.

Author information

  • 1Department of Medicine, University of North Carolina at Chapel Hill, 27599, USA.

Abstract

The nuclear factor kappaB (NF-kappaB) regulates the transcription of genes bearing the kappaB consensus motif. Transmigration of NF-kappaB from the cytoplasm to the nucleus is regulated by the IkappaB family of inhibitory NF-kappaB-binding proteins. Dissociation of the NF-kappaB-IkappaB complex requires both phosphorylation and degradation of IkappaBs. We demonstrate that IL-1beta induces complete IkappaB alpha degradation in Caco-2 cell lines but not in HT-29, T84, SW-480 transformed cell lines, or native colonic epithelial cells. A similar lack of IkappaB alpha degradation in HT-29 cells followed TNF-alpha and bacterial polymer stimulation. IL-1beta stimulated NF-kappaB nuclear translocation and NF-kappaB-dependent IL-1beta and IL-8 expression in both Caco-2 and HT-29 cells as assayed by electrophoretic mobility shift assay, immunofluorescence, kappaB-luciferase transfection, reverse transcriptase-PCR analysis and ELISA. In HT-29 cells stimulated with IL-1beta, IkappaB alpha was phosphorylated and when cycloheximide blocked new protein synthesis, IkappaB alpha was partially degraded. NF-kappaB cytoplasmic to nuclear transmigration was incomplete and preceded IkappaB alpha degradation in 9T-29 cells, in contrast to complete coordinated NF-kappaB nuclear translocation and IkappaB alpha degradation in Caco-2 cells. Greater sensitivity of HT-29 cells to a calpain inhibitor, as measured by IL-8 secretion, suggested enhanced resistance to IkappaB alpha proteolysis. These data show that IL-1beta induces NF-kappaB activity and expression of NF-kappaB-dependent genes in colonic epithelial cells and suggest altered regulation of IkappaB alpha degradation compared with other cell lineages, which may result in their increased responsiveness to therapeutic blockade.

PMID:
8977194
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk