Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14922-7.

Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus.

Author information

  • 1Department of Anesthesiology, University of California Los Angeles 90095-1778, USA.


The pore-forming alpha subunit of large conductance voltage- and Ca(2+)-sensitive K (MaxiK) channels is regulated by a beta subunit that has two membrane-spanning regions separated by an extracellular loop. To investigate the structural determinants in the pore-forming alpha subunit necessary for beta-subunit modulation, we made chimeric constructs between a human MaxiK channel and the Drosophila homologue, which we show is insensitive to beta-subunit modulation, and analyzed the topology of the alpha subunit. A comparison of multiple sequence alignments with hydrophobicity plots revealed that MaxiK channel alpha subunits have a unique hydrophobic segment (S0) at the N terminus. This segment is in addition to the six putative transmembrane segments (S1-S6) usually found in voltage-dependent ion channels. The transmembrane nature of this unique S0 region was demonstrated by in vitro translation experiments. Moreover, normal functional expression of signal sequence fusions and in vitro N-linked glycosylation experiments indicate that S0 leads to an exoplasmic N terminus. Therefore, we propose a new model where MaxiK channels have a seventh transmembrane segment at the N terminus (S0). Chimeric exchange of 41 N-terminal amino acids, including S0, from the human MaxiK channel to the Drosophila homologue transfers beta-subunit regulation to the otherwise unresponsive Drosophila channel. Both the unique S0 region and the exoplasmic N terminus are necessary for this gain of function.

[PubMed - indexed for MEDLINE]
Free PMC Article

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

Research Materials

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk