Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuroscience. 1996 Dec;75(3):901-15.

Differential regional distribution of AMPA receptor subunit messenger RNAs in the human spinal cord as visualized by in situ hybridization.

Author information

  • 1Department of Neurochemistry, Instituto de Investigaciones Biom├ędicas de Barcelona, Consejo Superior de Investigaciones Cientificas (CSIC), Spain.

Abstract

The electrophysiological characteristics of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors vary with their subunit composition. The establishment of the subunit distribution is an essential step in the understanding of the function of these receptors. In the spinal cord, AMPA receptors are involved in normal and, possibly, pathological processes. Using in situ hybridization histochemistry with radiolabelled oligonucleotides as probes, we have studied the distribution of AMPA receptor subunit messenger RNAs (spliced flip and flop variants of glutamate receptor subunits A-D) in the human post mortem spinal cord. Transcripts for flip variants were preferentially expressed in the superficial dorsal horn, with a dorsoventral decreasing gradient of the signals. Transcripts for flop variants were also abundantly present in all layers of the gray matter, with the highest signal being observed for glutamate receptor subunit Bflop. Accordingly, flop forms were predominant in areas other than the superficial dorsal horn. This differential distribution of transcripts in the dorsal horn suggests that the subunit composition of AMPA receptors varies with the afferent inputs; AMPA receptors on neurons in the superficial dorsal horn, where terminals of thin primary afferents conducting noxious information are located, contain more flip forms, whereas neurons in the deep dorsal horn, where thick primary afferents mediating innocuous stimuli terminate, have AMPA receptors which are mainly composed of flop forms of glutamate receptor subunits A and B. The relatively high abundance of glutamate receptor subunit B transcripts in the superficial laminae of the dorsal horn indicates that AMPA receptors in these laminae have lower Ca2+ permeability. In addition, the relative abundance of glutamate receptor subunits Bflip and Dflop may show that AMPA receptors in the superficial dorsal horn have slow desensitization, while those of motor neurons have rapid desensitization.

PMID:
8951883
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk