Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Sports Med. 1996;24(6 Suppl):S2-8.

Muscle strain injuries.

Author information

  • Division of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.

Abstract

One of the most common injuries seen in the office of the practicing physician is the muscle strain. Until recently, little data were available on the basic science and clinical application of this basic science for the treatment and prevention of muscle strains. Studies in the last 10 years represent action taken on the direction of investigation into muscle strain injuries from the laboratory and clinical fronts. Findings from the laboratory indicate that certain muscles are susceptible to strain injury (muscles that cross multiple joints or have complex architecture). These muscles have a strain threshold for both passive and active injury. Strain injury is not the result of muscle contraction alone, rather, strains are the result of excessive stretch or stretch while the muscle is being activated. When the muscle tears, the damage is localized very near the muscle-tendon junction. After injury, the muscle is weaker and at risk for further injury. The force output of the muscle returns over the following days as the muscle undertakes a predictable progression toward tissue healing. Current imaging studies have been used clinically to document the site of injury to the muscle-tendon junction. The commonly injured muscles have been described and include the hamstring, the rectus femoris, gastrocnemius, and adductor longus muscles. Injuries inconsistent with involvement of a single muscle-tendon junction proved to be at tendinous origins rather than within the muscle belly. Important information has also been provided regarding injuries with poor prognosis, which are potentially repairable surgically, including injuries to the rectus femoris muscle, the hamstring origin, and the abdominal wall. Data important to the management of common muscle injuries have been published. The risks of reinjury have been documented. The early efficacy and potential for long-term risks of nonsteroidal antiinflammatory agents have been shown. New data can also be applied to the field with respect to the beneficial effects of warm-up, temperature, and stretching on the mechanical properties of muscle. These benefits potentially reduce the risks of strain injury to the muscle. Fortunately, many of the factors protecting muscle, such as strength, endurance, and flexibility, are also essential for maximum performance. Future studies should delineate the repair and recovery process emphasizing not only the recovery of function, but also the susceptibility to reinjury during the recovery phase.

PMID:
8947416
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk