Format

Send to:

Choose Destination
See comment in PubMed Commons below
Am J Physiol. 1996 Nov;271(5 Pt 1):G741-6.

ATP-dependent copper transporter, in the Golgi apparatus of rat hepatocytes, transports Cu(II) not Cu(I).

Author information

  • 1Department of Child Health, Ninewells Hospital and Medical School, University of Dundee, United Kingdom.

Abstract

The Wilson disease adenosinetriphosphatase (ATPase; ATP7B) is believed to bind copper as Cu(I). We provide evidence to suggest that the ATPase actually transports Cu as Cu(II). When the copper is presented to rat liver microsomes as Cu(I), virtually all uptake is ATP independent. If the copper is presented as copper oxalate [Cu(II)], total uptake is reduced to approximately 10% of Cu(I) levels, but ATP-dependent uptake rises, both as a proportion of total uptake and in absolute terms. The reducing agent vitamin C and the Cu(I) chelator bathocuproine both override the effect of oxalate. The data indicate that there are two transporters in the microsomes, an ATP-independent Cu(I) transporter and an ATP-dependent Cu(II) pump. The activity of the Cu(I) transporter correlates most strongly with alkaline phosphatase, suggesting that it is derived from plasma membrane contamination. Cu(II) ATP-dependent transport correlates only with beta-1, 4-galactosyltransferase, which indicates that it is located in the Golgi apparatus.

PMID:
8944686
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk