Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Dec 13;271(50):31795-8.

RED2, a brain-specific member of the RNA-specific adenosine deaminase family.

Author information

  • 1Laboratory for Neurobiology, Max-Planck Institute for Medical Research, Jahnstrasse 12, 69120 Heidelberg, Germany. seeburg@sun0.urz.uni-heidelberg.de


The mammalian RNA-specific adenosine deaminases DRADA/dsRAD (alias ADAR) and RED1 (alias ADARB1) have been implicated in the site-selective editing of brain-expressed pre-mRNAs for glutamate receptor subunits and of antigenomic RNA of hepatitis delta virus. These enzymes are expressed in many if not all tissues, predicting an as yet unappreciated significance for adenosine deamination-mediated recoding of gene transcripts in the mammalian organism. We now report the molecular cloning of cDNA for RED2 (alias ADARB2), a third member of the RNA-specific adenosine deaminase family in the rodent. RED2 is closely sequence-related to RED1 but appears to be expressed only in the brain, where expression is widespread reaching highest levels in olfactory bulb and thalamus. RED2 further differs from RED1 in having a 54-residue amino-terminal extension which includes an arginine-rich motif. Different from DRADA and RED1, recombinantly expressed RED2 did not deaminate adenosines in extended synthetic dsRNA or in GluR-B pre-mRNA. However, a chimera of RED1 and RED2 edited the GluR-B Q/R and R/G sites with moderate efficiency. Our data suggest that RED2 may edit brain-specific transcripts with distinct structural features.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk