Display Settings:

Format

Send to:

Choose Destination
Hum Mol Genet. 1996 Nov;5(11):1695-701.

The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2.

Author information

  • 1University of Cambridge, Department of Pathology, UK.

Erratum in

  • Hum Mol Genet 1997 Feb;6(2):334-5.

Abstract

EST 221 derived from human adult testis detects homology to the Drosophila fat facets gene (fat) and has related sequences on both the X and Y chromosomes mapping to Xp11.4 and Yq11.2 respectively. These two loci have been termed DFFRX and DFFRY for Drosophila fat facets related X and Y. The major transcript detected by EST 221 is-8 kb in size and is expressed widely in a range of 16 human adult tissues. RT-PCR analysis of 13 different human embryonic tissues with primers specific for the X and Y sequences demonstrates that both loci are expressed in developing tissues and quantitative RT-PCR of lymphoblastoid cell lines carrying different numbers of X chromosomes reveals that the X-linked gene escapes X-inactivation. The amino acid sequence (2547 residues) of the complete open reading frame of the X gene has 44% identity and 88% similarity to the Drosophila sequence and contains the conserved Cys and His domains characteristic of deubiquitinating enzymes, suggesting its biochemical function may be the hydrolysis of ubiquitin from protein-ubiquitin conjugates. The requirement of faf for normal oocyte development in Drosophila combined with the map location and escape from X-inactivation of DFFRX raises the possibility that the human homologue plays a role in the defects of oocyte proliferation and subsequent gonadal degeneration found in Turner syndrome.

PMID:
8922996
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk