Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Biochemistry. 1996 Nov 5;35(44):13871-7.

Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins.

Author information

  • 1Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill 27599, USA.

Abstract

Recently, a human cDNA clone with high sequence homology to the photolyase/blue-light photoreceptor family was identified. The putative protein encoded by this gene exhibited a strikingly high (48% identity) degree of homology to the Drosophila melanogaster (6-4) photolyase [Todo et al. (1996) Science 272, 109-112]. We have now identified a second human gene whose amino acid sequence displays 73% identity to the first one and have named the two genes CRY1 and CRY2, respectively. The corresponding proteins hCRY1 and hCRY2 were purified and characterized as maltose-binding fusion proteins. Similar to other members of the photolyase/blue-light photoreceptor family, both proteins were found to contain FAD and a pterin cofactor. Like the plant blue-light photoreceptors, both hCRY1 and hCRY2 lacked photolyase activity on the cyclobutane pyrimidine dimer and the (6-4) photoproduct. We conclude that these newly discovered members of the photolyase/photoreceptor family are not photolyases and instead may function as blue-light photoreceptors in humans.

PMID:
8909283
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk