Format

Send to:

Choose Destination
See comment in PubMed Commons below
Toxicon. 1996 Sep;34(9):987-1001.

Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity.

Author information

  • 1Shanghai Institute of Physiology, Chinese Academy of Sciences, P.R. China.

Abstract

Two neurotoxins, BmK I and BmK II, were purified from the venom of the Chinese scorpion Buthus martensi Karsch. The complete amino acid sequences of both toxins, each containing 64 amino acid residues, were determined by the automatic sequencing of reduced and S-carboxymethylated toxins and their peptides, obtained after cleavage with TPCK-treated trypsin and Staphylococcus aureus V8 protease, respectively. Toxicity as minimum lethal dose tested by i.c.v. injection in mice showed that BmK I was six times more potent than BmK II. Only two amino acid replacements were found: at position 59 Val in BmK I was replaced by Ile in BmK II, and at position 62 a basic Lys residue in BmK I was substituted by a neutral Asn residue in BmK II. These features suggest that the positively charged residue (Lys or Arg) in the C-terminal position 62 (or 61 or 63) may also play an important role in facilitating the interaction between scorpion neurotoxins and the receptor on sodium channels. The effects of BmK I on nerve excitability were examined with the crayfish axon using intracellular recording and voltage-clamp conditions. The results indicate that BmK I preferentially blocks the sodium channel inactivation process. Thus, functional and structural similarities suggest that BmK I and BmK II belong to group 3 of scorpion alpha-type toxins.

PMID:
8896191
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk