Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Anat Embryol (Berl). 1996 Mar;193(3):209-27.

Distribution of serotonin-immunoreactivity in the brain of the pigeon (Columba livia).

Author information

  • 1Laboratoire de Neuromorphologie, INSERM U 106, Hôpital de la Salpêtrière, Paris, France.


The distribution of serotonin (5-HT)-containing perikarya, fibers and terminals in the brain of the pigeon (Columba livia) was investigated, using immunohistochemical and immunofluorescence methods combined with retrograde axonal transport. Twenty-one different groups of 5-HT immunoreactive (IR) cells were identified, 2 of which were localized at the hypothalamic level (periventricular organ, infundibular recess) and 19 at the tegmental-mesencephalic and rhombencephalic levels. Ten of the cell groups were situated within the region of the midline from the isthmic to the posterior rhombencephalic level and constituted the raphe system (nucleus annularis, decussatio brachium conjunctivum, area ventralis, external border of the nucleus interpeduncularis, zona peri-nervus oculomotorius, zona perifasciculus longitudinalis medialis, zona inter-flm, nucleus linearis caudalis, nucleus raphe superior pars ventralis, nucleus raphe inferior). The 9 other cell populations belonged to the lateral group and extended from the posterior mesencephalic tegmentum to the caudal rhombencephalon [formatio reticularis mesencephali, nucleus ventrolateralis tegmenti, ectopic area (Ec) of the nucleus isthmo-opticus (NIO), nucleus subceruleus, nucleus ceruleus, nucleus reticularis pontis caudalis, nucleus vestibularis medialis, nucleus reticularis parvocellularis and nucleus reticularis magnocellularis]. Combining the retrograde axonal transport of rhodamine beta-isothiocyanate (RITC) after intraocular injection and immunohistofluorescence (fluoresceine isothiocyanate: FITC/5-HT) showed the centrifugal neurons (NIO, Ec) to be immunonegative. Serotonin-IR fibers and terminals were found to be very broadly distributed within the brain and were particularly prominent in several structures of the telencephalon (archistriatum pars dorsalis, nucleus taeniae, area parahippocampalis, septum), diencephalon (nuclei preopticus medianus, magnocellularis, nucleus geniculatus lateralis pars ventralis, nucleus triangularis, nucleus pretectalis), mesencephalon-rhombencephalon (superficial layers of the optic tectum, nucleus ectomamillaris, nucleus isthmo-opticus and in most of the cranial nerve nuclei). Comparing the present results with those of previous studies in birds suggests some major serotonin-containing pathways in the avian brain and clarifies the possible origin of the serotonin innervation of some parts of the brain. Moreover, comparing our results in birds with those obtained in other vertebrate species shows that the organization of the serotoninergic system in many regions of the avian brain is much like that found in reptiles and mammals.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk