Histological convergent evolution of the accessory submandibular glands in four species of frog-eating bats

Eur J Morphol. 1996 Aug;34(3):163-8. doi: 10.1076/ejom.34.3.163.13028.

Abstract

The accessory submandibular glands in four species of bats were examined by electron microscopy. These four species represent two independently evolved lineages. The fringe-lipped bat, Trachops cirrhosis, is a Neotropical phyllostomid species, whereas the false vampire bats of southeast Asia, Megaderma lyra and M. spasma, and the heart-nosed bat, Cardioderma cor, of East Africa are megadermatid species. These glands show extreme deviation from typical salivary gland histology: their secretory endpieces are in the form of follicles and their ducts lack the cytological details that permit identification of diverse duct segments. Despite their unusual histology, the secretory endpieces in M. lyra, M. spasma, and C. cor consist of secretory cells that conform to typical secretory cell morphology. In contrast, secretion by follicular cells in T. cirrhosis involves unusual cytoplasmic bodies, and their mitochondria frequently have intracristal crystalloids. Ducts in all four species consist of simple cuboidal to columnar epithelium without basal striations. Follicles and ducts in all four bats are surrounded by numerous myoepithelial cells and are heavily innervated by hypolemmal nerve terminals. Despite their widely separated geographical ranges, all four bat species consume frogs and other vertebrates. Frogs and toads often possess toxic cutaneous glands that provide a chemical defense against predation. It is postulated that the unusual accessory glands in the four frog-eating species secrete toxin-neutralizing salivary factors. The follicular form of the endpieces permits storage of preformed saliva and their coterie of myoepithelial cells and hypolemmal nerve terminals facilitates the sudden and rapid expulsion of saliva into the oral cavity during the consumption of noxious amphibians.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Biological Evolution*
  • Chiroptera / physiology*
  • Cytoplasm / ultrastructure
  • Gap Junctions / ultrastructure
  • Inclusion Bodies / ultrastructure
  • Microscopy, Electron
  • Species Specificity
  • Submandibular Gland / cytology*
  • Submandibular Gland / ultrastructure