Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Genomics. 1996 Sep 1;36(2):328-36.

Identification of genes from a 500-kb region at 7q11.23 that is commonly deleted in Williams syndrome patients.

Author information

  • 1Department of Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.

Abstract

Williams syndrome (WS) is a multisystem developmental disorder caused by the deletion of contiguous genes at 7q11.23. Hemizygosity of the elastin (ELN) gene can account for the vascular and connective tissue abnormalities observed in WS patients, but the genes that contribute to features such as infantile hypercalcemia, dysmorphic facies, and mental retardation remain to be identified. In addition, the size of the genomic interval commonly deleted in WS patients has not been established. In this study we report the characterization of a 500-kb region that was determined to be deleted in our collection of WS patients. A detailed physical map consisting of cosmid, P1 artificial chromosomes, and yeast artificial chromosomes was constructed and used for gene isolation experiments. Using the techniques of direct cDNA selection and genomic DNA sequencing, three known genes (ELN, LIMK1, and RFC2), a novel gene (WSCR1) with homology to RNA-binding proteins, a gene with homology to restin, and four other putative transcription units were identified. LIMK1 is a protein kinase with two repeats of the LIM/double zinc finger motif, and it is highly expressed in brain. RFC2 is the 40-kDa ATP-binding subunit of replication factor C, which is known to play a role in the elongation of DNA catalyzed by DNA polymerase delta and epsilon. LIMK1 and WSCR1 may be particularly relevant when explaining cognitive defects observed in WS patients.

PMID:
8812460
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk