Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Cell. 1996 Sep 20;86(6):865-75.

Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor.

Author information

  • 1Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic protein Ssk1p contains a receiver domain. Ypd1p binds to both Sln1p and Ssk1p and mediates the multistep phosphotransfer reaction (phosphorelay). This phosphorelay system is initiated by the autophosphorylation of Sln1p at His576. This phosphate is then sequentially transferred to Sln1p-Asp-1144, then to Ypd1p-His64, and finally to Ssk1p-Asp554. We propose that the multistep phosphorelay mechanism is a universal signal transduction apparatus utilized both in prokaryotes and eukaryotes.

PMID:
8808622
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk