Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1996 Sep 6;261(5):646-57.

A mutation in the human cyclin-dependent kinase interacting protein, CksHs2, interferes with cyclin-dependent kinase binding and biological function, but preserves protein structure and assembly.

Author information

  • 1Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.

Abstract

A mutation directing an amino acid substitution in the conserved beta-hinge region of one of the human Cks isoforms, CksHs2, was constructed by site-directed mutagenesis. Replacement of glutamine for glutamate 63 (E63Q) was predicted to stabilize the beta-interchanged dimeric and hexameric assembly of CksHs2. However, such an effect was seen only at high, non-physiological pH. Three-dimensional structures of the E63Q hexameric mutant protein were determined to 2.6 A resolution in a P4(3)2(1)2 space group and 2.1 A in the C2 space group isostructural with wild-type, and both were shown to be virtually identical to the refined 1.7 A wild-type structure. Thus, the E63Q mutation did not alter the wild-type structure and assembly of CksHs2 but, surprisingly, disrupted the essential biological function of the protein and significantly reduced its ability to bind to cyclin-dependent kinases. The Kd of wild-type CksHs2 for CDK2 was 5.05 x 10(-8) M, whereas the affinity of the mutant protein for CDK2 was too low to allow a determination. These data, coupled with the observation that monomeric but not hexameric CksHs2 interacts with cyclin-dependent kinases, suggest that glutamine 63 is likely to be directly involved in cyclin-dependent kinase binding in vitro and in vivo.

PMID:
8800213
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk