Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Neuron. 1996 Jul;17(1):27-41.

Control of daughter cell fates during asymmetric division: interaction of Numb and Notch.

Author information

  • 1Howard Hughes Medical Institute, University of California, San Francisco 94143-0724, USA.

Abstract

During development of the Drosophila peripheral nervous system, a sensory organ precursor (SOP) cell undergoes rounds of asymmetric divisions to generate four distinct cells of a sensory organ. Numb, a membrane-associated protein, is asymmetrically segregated into one daughter cell during SOP division and acts as an inherited determinant of cell fate. Here, we show that Notch, a transmembrane receptor mediated cell-cell communication, functions as a binary switch in cell fate specification during asymmetric divisions of the SOP and its daughter cells in embryogenesis. Moreover, numb negatively regulates Notch, probably through direct protein-protein interaction that requires the phosphotyrosine-binding (PTB) domain of Numb and either the RAM23 region or the very C-terminal end of Notch. Notch then positively regulates a transcription factor encoded by tramtrack (ttk). This leads to Ttk expression in the daughter cell that does not inherit Numb. Thus, the inherited determinant Numb bestows a bias in the machinery for cell-cell communication to allow the specification of distinct daughter cell fates.

Comment in

PMID:
8755476
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk