Send to

Choose Destination
See comment in PubMed Commons below
J Orthop Sports Phys Ther. 1996 May;23(5):294-301.

Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation.

Author information

  • 1Rehabilitation and Human Performance Laboratory, Steadman Hawkins Sports Medicine Foundation, Vail, CO 81657, USA.


Muscle activity, joints, angles, and heart rate during uphill walking were compared for application in knee rehabilitation. The objectives of this study were to quantify muscle activation levels at different treadmill grades and to determine the grade(s) at which knee range of motion would not further compromise the joint. Average and peak electromyographic activity of the quadriceps (vastus medialis oblique and vastus lateralis) and hamstrings (biceps femoris and medial hamstrings (semimembranosus/semitendinosus)] was recorded during walking at 0, 12, and 24% grade. Six subjects (age = 28.5 +/- 3.7 years, stature = 1.79 +/- .05 m, and mass = 74.7 +/- 7.9 kg) walked at self-selected speeds at each grade while ankle, knee and hip angles, heart rate, and electromyographic activity (surface electrodes) were recorded. Maximum voluntary contractions provided a relative reference for the electromyographic activity during walking. Average and peak electromyographic activity increased significantly across grades for the vastus medialis oblique (125 and 154%), vastus lateralis (109 and 139%), and biceps femoris (53 and 46%), but remained similar for the medial hamstrings. Maximum knee flexion at heel strike increased significantly with grade. Despite decreased self-selected speeds with increasing grade, there were significant increases in heart rate across grades. The results of this study provide a basic understanding of the quadriceps and hamstrings activity levels, lower extremity joint range of motion, and cardiovascular requirements of graded treadmill walking in normal subjects. The results also suggest that a grade just greater than 12% may be most beneficial for knee rehabilitation to minimize patellofemoral discomfort or potential strain on the anterior cruciate ligament. The benefits achieved through this functional activity encourage its implementation in rehabilitation and provide a basis for comparison with injured patients.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk