Send to:

Choose Destination
See comment in PubMed Commons below
J Comp Neurol. 1996 Apr 29;368(2):198-214.

Efferent connectivity of the hippocampal formation of the zebra finch (Taenopygia guttata): an anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin.

Author information

  • 1Department of Pharmacology, University of Oxford, United Kingdom.


The avian hippocampal formation (HP) is considered to be homologous to the mammalian hippocampus, being involved in memory formation and spatial memory in particular. The subdivisions and boundaries of the pigeon hippocampus have been defined previously by various morphological methods to detect further similarities with the mammalian homologue. We studied the efferent projections of the zebra finch hippocampus by applying Phaseolus vulgaris leucoagglutinin, and three main subdivisions were distinguished on the basis of the connectivity patterns. Dorsolateral injections gave rise to projections innervating the rostralmost extension of the HP, a laminar complex including the dorsal and ventral hyperstriata and the lamina frontalis superior, the rostral lobus parolfactorius, the medial and ventral paleostriatal regions, the lateral septal nucleus, the nucleus of the diagonal band, the dorsolateral corticoid area, the archistriatum posterius, and the nucleus taeniae in the telencephalon. In the diencephalon, labelled axons were seen in the periventricular and lateral hypothalamus, including the lateral mammillary nuclei, and in the dorsolateral and the dorsomedial posterior thalamic nuclei, whereas, in the midbrain, only the area ventralis of Tsai contained hippocampal fibres. With the exception of the bilateral archistriatal efferents, all projections were ipsilateral. Dorsomedial injections gave rise to a local fibre system that was almost completely restricted to the ipsilateral hippocampal formation. In addition, lectin-containing fibres continued in the dorsal septal region and a thin band in the hyperstriatum accessorium, adjacent to the lateral ventricle. Ventral injections gave rise to axons innervating ipsilaterally the dorsolateral subdivision, and bilaterally the medial septal nuclei and the contralateral ventral hippocampus.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk