Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Biol. 1996 Aug;134(3):699-714.

emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation.

Author information

  • 1Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

Abstract

emo-1(oz1) is a member of a class of hermaphrodite sterile mutations in Caenorhabditis elegans that produce endomitotic oocytes in the gonad arm. Oocytes in emo-1(oz1) mutants exhibit multiple defects during oogenesis. After meiotic maturation, ovulation fails, trapping oocytes in the gonad arm where they become endomitotic. emo-1 encodes a homologue of the Sec61p gamma subunit, a protein necessary for translocation of secretory and transmembrane proteins into the endoplasmic reticulum of yeast and mammalian cells. A putative emo-1 null mutation, oz151, displays embryonic lethality. The oz1 sterile mutation is a transposable element insertion into the emo-1 3' untranslated region that almost completely eliminates germline mRNA accumulation. Genetic mosaic analysis using the oz1 allele indicates that emo-1(+) expression in germ cells is required for fertility. The J67 monoclonal antibody, which recognizes an oocyte surface antigen (Strome, S. 1986. In Gametogenesis and the Early Embryo. J.G. Gall, editor. Alan R. Liss, Inc., New York. 77-95.), does not stain oz1 oocytes, a finding consistent with defective protein transport in the mutant. We propose that the emo-1 gene product acts in the transport of secreted and transmembrane proteins in C. elegans oocytes, and is necessary for both oogenesis and the coupling of ovulation with meiotic maturation.

PMID:
8707849
[PubMed - indexed for MEDLINE]
PMCID:
PMC2120936
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk