Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Sep 6;271(36):22117-24.

Interaction of kinesin motor domains with alpha- and beta-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation.

Author information

  • 1Biochimie Cellulaire, CNRS UPR 9065 and the UniversitĂ© P. & M. Curie, Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France.

Abstract

Interaction of rat kinesin and Drosophila nonclaret disjunctional motor domains with tubulin was studied by a blot overlay assay. Either plus-end or minus-end-directed motor domain binds at the same extent to both alpha- and beta-tubulin subunits, suggesting that kinesin binding is an intrinsic property of each tubulin subunit and that motor directionality cannot be related to a preferential interaction with a given tubulin subunit. Binding features of dimeric versus monomeric rat kinesin heads suggest that dimerization could drive conformational changes to enhance binding to tubulin. Competition experiments have indicated that kinesin interacts with tubulin at a Tau-independent binding site. Complementary experiments have shown that kinesin does not interact with the same efficiency with the different tubulin isoforms. Masking the polyglutamyl chains with a specific monoclonal antibody leads to a complete inhibition of kinesin binding. These results are consistent with a model in which polyglutamylation of tubulin regulates kinesin binding through progressive conformational changes of the whole carboxyl-terminal domain of tubulin as a function of the polyglutamyl chain length, thus modulating the affinity of tubulin for kinesin and Tau as well. These results indicate that microtubules, through tubulin polymorphism, do have the ability to control microtubule-associated protein binding.

PMID:
8703022
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk