Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1996 Apr 16;35(15):4923-8.

Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin.

Author information

  • 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

The antibiotic fosfomycin inhibits bacterial cell wall biosynthesis by inactivation of UDP-GlcNAc enolpyruvyl tranferase (MurA). Prior work has established that Cys115 of Escherichia coli and Enterobacter cloacae MurA is the active site nucleophile alkylated by fosfomycin and implicated this residue in the formation of a covalent phospholactyl-enzyme adduct derived from substrate, phosphoenolpyruvate (PEP). On the basis of sequencing information from putative MurA homolog from Mycobacterium tuberculosis, we generated a C115D mutant of E. coli MurA that was highly active but fully resistant to time-dependent inhibition by fosfomycin. Fosfomycin still bound to the active site of C115D MurA, as established by the observed reversible competitive inhibition by fosfomycin. Fosfomycin still bound to the active site of C115D MurA, as established by the observed reversible competitive inhibition vs PEP. In contrast to the broad pH-independent behavior of wild-type (WT) MurA, C115D mutant activity titrated across the pH range examined (pH 5.5-9) with an apparent pKa approximately 6, with kcatC115D ranging from approximately 10kcatWT at pH 5.5 to <0.1kcatWT at pH9.0. Km(PEP)115D was relatively constant in the pH range examined and increased approximately 100-fold relative to Km(PEP)WT. A fosfomycin-resistant C115E mutant with -1% activity of the C115D mutant was found to follow a pH dependence similar to that observed for C115D MurA. The contrasting pH dependences of WT and C115D MurA was also observed in the reaction with the pseudosubstrate, (Z)-3-fluorophosphoenolpyruvate, strongly suggesting a role for Cys/Asp115 as the general acid in the protonation of C-3 of PEP during MurA-catalyzed enol ether transfer. The difference in nucleophilicity between the carboxylate side chains of Asp115 and Glu115 and the thiolate group of Cys115 suggests that covalent enzyme adduct formation is not required for catalytic turnover and, furthermore, provides a chemical rationale for the resistance of the C115D and C115E mutants to fosfomycin inactivation.

PMID:
8664284
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk