Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1996 Jun 7;271(23):13308-16.

Role of phosphorylation on DNA binding and transcriptional functions of human progesterone receptors.

Author information

  • 1Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.


To study the function of human progesterone receptor (hPR) phosphorylation, we have tested four sets of serine to alanine substitution mutants: 10 serine clusters, located in regions common to both hPR isoforms (the M-series mutants) were mutated in A-receptors and B-receptors; 6 serine clusters located in the B-upstream segment (BUS; the B-series mutants) were mutated individually and collectively and cloned into B-receptors and into BUS-DBD-NLS, a constitutive transactivator, in which the AF3 function of BUS is fused to the DNA binding domain (DBD) and nuclear localization signal (NLS) of hPR. Transcription by most of the M-series mutants resembles that of wild-type A- or B-receptors. Mutation of 3 sites, Ser190 at the N terminus of A-receptors, a cluster of serines just upstream of the DBD, or Ser676 in the hinge region, inhibits transcription by 20-50% depending on cell or promoter context. These sites lie outside the AF1 activation function. M-series mutants are substrates for a hormone-dependent phosphorylation step, and they all bind well to DNA. Progressive mutation of the B-series clusters leads to the gradual dephosphorylation of BUS, but only the 6-site mutant, involving 10 serine residues, is completely dephosphorylated. These data suggest that in BUS alternate serines are phosphorylated or dephosphorylated at any time. However, even when BUS is completely dephosphorylated, both BUS-DBD-NLS and full-length B-receptors remain strong transactivators. Mutant B-receptors also do not acquire the dominant negative properties of A-receptors, and they retain the ability to activate transcription in synergy with 8-Br-cAMP and antiprogestins. We conclude that phosphorylation has subtle effects on the complex transcriptional repertoire that distinguishes the two hPR isoforms and does not influence transactivation mediated by AF1 or AF3, but subserves other functions.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk