Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 1996 Jun 15;225(2):399-410.

Inhibition of the proliferative cycle and apoptotic events in WiDr cells after down-regulation of the calcium-binding protein calretinin using antisense oligodeoxynucleotides.

Author information

  • 1Institute of Histology and General Embryology, University of Fribourg, Switzerland.

Abstract

The colon adenocarcinoma cell line WiDr expresses the calcium-binding protein calretinin (CR). In order to deduce possible functions of calretinin in these cells we decreased its concentration by antisense techniques. Treatment of WiDr cells with phosphorothioate antisense oligodeoxynucleotides (AS-ODNs) led to a drop in calretinin expression, as evidenced by immunohistochemical staining of WiDr cells and Western blot analysis of cytosolic cell extracts. The morphology of these epithelial cells changed from polygonal to spherical and they formed dense cell clusters. Cells displaying morphological alterations typical for apoptotic cells were observed after incubation with AS-ODNs, as evidenced by phase-contrast and electron microscopy. The mitotic rate of AS-ODN-treated cells dropped significantly, as demonstrated by mitotic labeling and time-lapse microcinematography. Furthermore, an accumulation of cells in phase G1 and a reduction of [3H]thymidine-labeled cells was observed in antisense-treated cells. The basal level of [Ca2+]i was not influenced by the down-regulation of calretinin. WiDr cells incubated with the nonsense, reverse-sense, or with an oligodeoxynucleotide with a totally unrelated sequence did not show any significant differences when compared to control cells. We conclude that calretinin levels have an impact on the progression of the cell cycle of WiDr cells.

PMID:
8660929
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk