Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Dev Biol. 1996 May 25;176(1):143-8.

Wingless signaling induces nautilus expression in the ventral mesoderm of the Drosophila embryo.

Author information

  • 1Department of Molecular Biology and Oncology, Hamon Center for Basic Cancer Research, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9148, USA.

Abstract

The segregation of founder cells from the somatic mesoderm is a prerequisite for the formation of body wall muscles in the Drosophila embryo. The myogenic basic helix-loop-helix protein, Nautilus (Nau), is expressed in a subset of these founder cells in medial and lateral positions in the somatic mesoderm. Mutations in the wingless (wg) gene, which encodes a secreted growth factor, lead to the complete loss of Nau-expressing medial muscle precursor cell clusters, but not lateral clusters. Using the GAL4/UAS system, we demonstrate that the wg-derived signal can originate from either ectoderm or mesoderm to influence nau expression. By using a temperature-sensitive wg allele, we also show that wg function is required during and after gastrulation for the formation of Nau-expressing medial muscle precursor cell clusters. Our results, combined with recent studies from chick, suggest a conserved role for Wg signaling pathways during muscle development.

PMID:
8654890
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk