Format

Send to:

Choose Destination
See comment in PubMed Commons below
Appl Environ Microbiol. 1996 May;62(5):1493-9.

Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture.

Author information

  • 1Swiss Federal Institute for Environmental Science and Technology (EAWAG), Swiss Federal Institute of Technology (ETH), Dübendorf, Switzerland.

Abstract

In natural environments heterotrophic microorganisms encounter complex mixtures of carbon sources, each of which is present at a concentration of a few micrograms per liter or even less. Under such conditions no significant growth would be expected if cells utilized only one of the available carbon compounds, as suggested by the principle of diauxic growth. Indeed, there is much evidence that microbial cells utilize many carbon compounds simultaneously. Whereas the kinetics of single-substrate and diauxic growth are well understood, little is known about how microbial growth rates depend on the concentrations of several simultaneously utilized carbon sources. In this study this question was answered for carbon-limited chemostat growth of Escherichia coli fed with mixtures of up to six sugars; the sugars used were glucose, galactose, maltose, ribose, arabinose, and fructose. Independent of the mixture composition and dilution rate tested, E. coli utilized all sugars simultaneously. Compared with growth with a single sugar at a particular growth rate, the steady-state concentrations were consistently lower during simultaneous utilization of mixtures of sugars. The steady-state concentrations of particular sugars depended approximately linearly on their contributions to the total carbon consumption rate of the culture. Our experimental data demonstrate that the simultaneous utilization of mixtures of carbon sources enables heterotrophic microbes to grow relatively fast even in the presence of low environmental substrate concentrations. We propose that the observed reductions in the steady-state concentrations of individual carbon sources during simultaneous utilization of mixtures of carbon sources by heterotrophic microorganisms reflect a general kinetic principle.

PMID:
8633848
[PubMed - indexed for MEDLINE]
PMCID:
PMC167924
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk